Working Out the 23 cm EME Band

N5BF 2014-2017 Microwave Update October 26-29, 2017 Santa Clara, California http://cbduncan.duncanheights.com/HamRadio/HamRadio.html

Outline

- The N5BF 23 cm EME Station
- The Moon humanity's beacon from antiquity
- Working the 23 cm EME Band in 2016-2017

The N5BF 23 cm EME Station

Why 1296? (1960)

- 1. It is the first ham band where Faraday polarization shift becomes negligible.
- 2. Lowest ham band in which galactic and solar noise are at a minimum.
- 3. Highest ham band on which receive noise figure of less than 1 dB are possible.
- 4. Highest ham band where tubes capable of a kW input are available.
- 5. The only ham band where we were definitely assured that a competent and reliable group would be duplicating our efforts on the other end."
- "Project Moon Bounce As Seen from Rhododendron Swamp" by F.
 S. Harris, W1FZJ at http://www.ok2kkw.com/eme1960/eme1960eng.htm

1296 at N5BF (2014-)

- Quiet sky and environment, particularly important in the Big City.
 - 2010 ARRL Handbook Section 30.9 and Figure 30.64, Section 5.8 and Table 5.2.
 - Observational and anecdotal evidence that the 144 and 432 MHz bands are not very quiet in the Los Angeles basin and that it is even worse on 50 MHz and down.
 - I am not a "drive out in the desert for the weekend" type of operator despite higher activity levels on the lower bands.
- Enough amateur activity to be worthwhile by my standards.
 - Experienced 23 cm EME operator Doug Millar K6JEY estimated about 85 active stations worldwide (in 2015).
 That was good enough.
 - Some evidence that 432 MHz activity worldwide is decreasing while 1296 MHz is increasing.
- Faraday rotation negligible
 - And unimportant due to current convention of using circular polarization.
- 1296 technology today is within reach of a hobby budget, good performance, better than 1960.
- Station capable of detecting self echoes.
- Exploration of the 23 cm EME space as visible from my house.
 - Ready to operate during brief or cramped availabilities.
- Decades of daydreaming about an advanced station in the back of the 1971 edition of ARRL's "How to Become A Radio Amateur" that I mistakenly thought was 1296 MHz. (I'm a romantic.)
- **1296 is where amateur radio EME started**. (ditto, romantic, and amateur historian)
- "Top Band" of microwaves

Red ties to 1960 Green is important to me

GOTA

• Millar's Rule:

"Get your station on the air *then* improve it." - K6JEY

People tend to get stalled behind infinite complexity, unobtainium, and perfectionism

- Duncan's Rule:
 - Not about scrounging or minimizing \$\$ (within reason)
 - Is about fitting a real project into time available N5BF

Single Yagis Don't Work on 23 cm

1296 EME. N5BF 2017 SBMS/MUD

400 W de W6PQL

23cm35 tilted up - 2M12 shown for scale 7

Shack Move Plan

Tower Here (19' Rohn 25)

"Construction" Began 1/1/16

Rohn HB25AG Adjustable House Bracket, 0-15"

Rohn BPH25G Hinged Base Plate

3" hole in wall ready for Heliax, etc.

Stop and Think

- 432 after all?
 - No, on prior research
 - Comparison was a wash
- 8x 23cm49 really?
 - At least 500 pieces
 - Linear
 - Single band
 - No
 - K2RIW's 12-foot stressed parabola was looking really good about now
 - 1974 ARRL Antenna Book
 - Switched to RF Ham Design parabola
 - With 48 hours to go
 - But M^2 was very helpful

(PA1T)

(You can't find pictures of big 23 cm EME yagi arrays for good reasons.)

RFHamDesign 3 m. 0.45 f/d

Four (heavy) boxes of parts

One rib assembled

Construction

12 ribs and 5 rings assembled

Mesh attachment

Feed Installed

Assembly performed on tower, on AlfaSpid 1296 EME. N5BF 2017 SBMS/MUD

RX Testing

Good preamp behind marginal relay

Measuring System Noise Figure with Sabin Noise Source

TX Testing

300 Watts at Feed

1296 EME. N5BF 2017 SBMS/MUD

First Sun Noise Construction Configuration Note Feed Shadow 14

Tower in Maintenance Position

Tower in Operating Position

Dish in "Feed Maintenance Position" 070/-20 (photo from roof ridge)

The day I fixed the connector on the heliax (after many successful tests of the W6PQL amplifier "Load Fail" feature)

The View

(This is the only straight key I've been able to tolerate since 1972.

Configuration	One	Two	Three	Four	Five
Start Date	8/16/16	3/18/17	5/12/17		
End Date	3/17/17	present	7/21/17		
				Septum choke	VE4MA feed
Power @ Feed	280	280	280		
EIRP dBm	85.5	85.5	85.5		
KW	352	352	352		
Preamp	G4DDK	DB6NT	G4DDK #2		
Relay	CX-520D	Relcom	Relcom		
NF, sys., dB	2.19	1.50	1.41		
deg. K	190	120	111.3		
sun noise, dB	7.96	8.06	8.55		
sigma	0.50	0.10	0.06		
echoes, apogee	-24.5	-22.0	-22.8		
echoes, perigee	-20.1	-18.9	-17.3		
sigma	1.9	2.1	2.2		
VK3UM	done	done	done		

Formal Configuration Comparisons

> Next thing to try is reducing RX spillover with choke.

Already have empirical tree RX data.

6/24/17 Perigee Echoes Recheck Configuration Three Note: Moon 10 degrees from sun

before

after

Worried about pointing yesterday, where lagging a degree or two in each direction seemed to help a lot, realigned on sun shadow and sun noise in "measure mode".

Change was minus on degree elevation and minus three degrees azimuth from old indicated to new indicated. 1296 EME. N5BF 2017 SBMS/MUD

Re-did yesterday's echo test but not as long and got better statistics by about two dB.

160 pts.

6/9/17 Apogee Moonrise, Bottom Declination, Azimuth 125 (118-132)

The Moon

Humanity's Beacon from Antiquity

Moon Arc for High Declination Day

90 2017 October 25-26 UTC From DM04vf 75 60 0025 Culmination Max Elevation Due South Not Ever Really Pine Tree Tops **Clearing Trees** 45 contacts problematic all pass Some Holes in Pine Blockage 30 Other Trees 0000 VK Window Open Hard Limit 15 1940 End of Europe Window Local Horizon 1940 Hill Horizon Catalina 0 90 103 120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345 360 30 60 75 15 45 ſ 1920 Astronomical Moonrise 0510 Hill Horizon 0530 Astronomical Moonset -15

Moon Arc for Low Declination Day

Working Victor UA9YLU Through a Slot in Pines / Oaks DM04 to MO92

Day to Day and Month to Month

- Everything happens about the same local time everywhere in the world each day
 - But the time zones are different

Day to Day and Month to Month

- Everything happens about the same local time everywhere in the world each day
 - But the time zones are different
- Everything happens about 50 minutes later each day
 - Moon proceeds east one diameter per hour (0.5°)

Day to Day and Month to Month

- Everything happens about the same local time everywhere in the world each day
 - But the time zones are different
- Everything happens about 50 minutes later each day
 - Moon proceeds east one diameter per hour (0.5°)
- Everything happens 2 hours earlier each month
 - Sun proceeds east one degree per day

The Good Declination Times

Winter	All night with the full moon
Spring	Afternoon through evening with the first quarter moon
Summer	All day with the new moon (on the sun)
Fall	Midnight to morning with the last quarter moon

This is true south or north but most of the stations are in the north so northern seasons and conditions are favored in planning and on the air. All the charts go with the Sidereal Month

	because it goes with the stars or "inertial
The Sidereal Month is 27.3 days	space."
The Anomalistic Month is 27.5 days	We think in terms of the Syndonic or
The Syndonic Month is 29.5 days	"Solar" Month since we are locked to the solar day.
	The perigee-apogee goes with the
	Anomalistic Month

Beat Notes of the Month(s)

Month	Period, Days	Period, Secs.	Frequency, Hz		Sidereal Beat Note	period, secs.	period, years
Sidereal	27.32166204	2360591.6	4.23623E-07	stars			
Syndonic	29.53058796	2551442.8	3.91935E-07	sun	3.16875E-08	31558169.09	1.000018034
Anomalistic	27.55455	2380713.12	4.20042E-07	perigee	3.58041E-09	279297557.7	8.850405534
Draconic	27.21222	2351135.808	4.25326E-07	node	-1.70372E-09	-586949399.8	-18.59930412
Tropical	27.32158	2360584.512	4.23624E-07	equinoxes	-1.27199E-12	-7.8617E+11	-24912.23745
	For reference				Saros is a hybrid of Draconic and		
Others					Syndonic		
Day		86400	1.15741E-05	(G-22)			
Year		31558152.96	3.16875E-08	(C-30)			
sunspot cycle		694279365.1	1.44034E-09	(G-35)			
https://en.wikipedia.org/wiki/Month		1.296E+09	(Eb+25)				

The anomalistic month does this

Perigee and High Declination Aligned November 2017 - good

Perigee and High Declination in quadrature November 2019 - OK

Apogee and High Declination Aligned November 2022 – Sad (for the north)

Apogee / Perigee ~ 406/356 k-km 40*log(406/356 ~ 2.3 dB "degradation" ("radar")

Sun and Moon Declinations 2017

Sun and Moon Declinations 2020

Sun and Moon Declinations 2024

Working the 23 cm EME Band

In 2016-2017

First Contact

• Katz' Rule

- "TRANSMIT!" - K2UYH

- On one's first contact, don't just calculate and tune around looking, transmit so they can find you!
 - (Observation after my first QSO indicates that lots of newcomers do this)
 - Through patience, I was unwittingly W1PV's first 23 cm EME QSO – he had experience but not on 1296

First Contacts

- K2UYH (#1) Al (plus CW)*
- HB9Q (#2) Dan
- DK3WG (#3) Jurg
- G4CCH (#4) Howard
- KNOWS (#5) (schedule proposed by Carl)
- VA6EME (#6) Randy
- I1NDP (#7) Nando
- IZ5TEP (#8) Fil
- K5DOG (#9) Esteban (was Stevedog)
- Then 1st ARRL weekend 2016

*All JT65C except as noted

JT QSOs

- Follow the template, click the buttons:
 - CQ N5BF DM04
 - N5BF K6JEY DM03
 - K6JEY N5BF DM04 000
 - RO
 - RRR
 - 73
 - 73
- One minute each, 6 minutes total
- SNR_{2500 Hz} is standard, always reported, < 0 dB

				SpecJT by	y K1JT		
Fre	q: 3703 (DF: 2433	3 (Hz)	BW <	> Speed: (1 2 • 3 4	5 🔿 H1 🔿 H
			00 -200 0		1000 1200 140	0 1600 1800 2000 220	00 2400 2600 28
18035	Sec. 1			1 . 1			
				MARY STA			
6.53				1.5 **** - ***.			
			Sec. 33	Ward and			
				Call Call States			
1000							
6,49							
1333	A. C.		the states				
8:47							
				16:54:0	08		-2 18
00				WSJT 10.0 r4087		,	
		' A			oy kin	Moon	
		I				Az: 82.96	
~~~	$\sim$		$\sim\sim$	$\sim$	$\sim \sim$	El: 19.46	
		×		mulmum	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Dop: 2046	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	molim	Annapart	www.	nommente	aponomen .	Dgrd: -0.4	
1199 leID Sy	nc dB	DT		Hz) NC1I_170428_	165300.WAV		
64500	0 -31		995 38				
64700	3 -24		-331 4 *				
	3 -24	1.6	-86 5 *				
64900 65100	6 -11	1.5	57 6 *	N5BF NC11 FN32			
64900 65100		1.5	57 6 *	N5BF NC11 FN32 R -15		10 0	
64900 65100	6 -11	1.5	57 6 *				
64900 65100 65300	6 -11 6 -11	1.5 1.5	57 6 *	R -15	1	0	
64900 65100 65300	6 -11 6 -11	1.5 1.5	57 6 *		1	0	
64900 65100 65300	6 -11 6 -11	1.5 1.5	57 6 *	R -15	1	0	
64900 65100 65300	6 -11 6 -11 1 0/9 2 4/1	1.5 1.5	57 6 *	R -15	1	0	Tx Stop
64900 65100 65300 65300 65300 65300	6 -11 6 -11 1 0/9 2 4/1	1.5 1.5 9	57 6 * 73 6 *	R -15 N5BF NC1I FN32 Decode Erase Sync 1 Zap	1	0 10 Include Exclude	Tx Stop
64900 65100 65300 65300 65300 65300	6 -11 6 -11 1 0/9 2 4/1 0 S	1.5 1.5	57 6 * 73 6 * Monitor	R -15 N5BF NC1I FN32 Decode Erase Sync 1 Zap Tol 400 AFC	1 Clear Avg NC1I N5BF DM NC1I N5BF DM	0 10 Include Exclude M04	
64900 65100 65300 65300 65300 Log QS To radio:	6 -11 6 -11 1 0/9 2 4/1 0 S NC11 FN32m	1.5 1.5 9 14	57 6 * 73 6 * Monitor Lookup Add	R -15 N5BF NC1I FN32 Decode Erase Sync 1 Zap Tol 400 AFC Freeze	1 Clear Avg NC1I N5BF DM NC1I N5BF DM	0 10 Include Exclude M04	Tx1
64900 65100 65300 65300 65300 Log QS To radio: Grid:	6 -11 6 -11 1 0/9 2 4/1 0 S NC1I FN32m Az	1.5 1.5 1.5 1.5 1.5	57 6 * 73 6 * Monitor	R -15 N5BF NC1I FN32 Decode Erase Sync 1 Zap Tol 400 AFC	1 Clear Avg NC1I N5BF DM NC1I N5BF DM RO RRR Frank -11	0 10 Include Exclude M04 M04 OOO	 Tx1 Tx2 Tx3 Tx4
64900 65100 65300 65300 65300 Log QS To radio: Grid:	6 -11 6 -11 1 0/9 2 4/1 0 S NC11 FN32m	1.5 1.5 1.5 1.5 1.5	57 6 * 73 6 * Monitor Lookup Add	R -15 N5BF NC1I FN32 Decode Erase Sync 1 Zap Tol 400 AFC Freeze	1 Clear Avg NC1I N5BF DM NC1I N5BF DM RO RRR Frank -11	0 10 Include Exclude M04 M04 OOO	 Tx1 Tx2 Tx3 Tx4

This is what a typical loud (-11) station (NC1I) looks like.

This is CW quality and audible.

Base tone (0) is 1270.5 Hz audio.

This is what a nearby repeater looks like.

•		Band Help 🔕 🔺 🕚 🐓	🕂 < -> 📢 🤝 🖬) 97% 🚱 🔳 Sat 18:27:06 🔇	
	Freq: 1291 DF: 21 (Hz) BW <	Xijit Speed: 1 2 3 4 5 H1 H2 00 200 300 400 500 600 700 800 900 1000	This is what "short	nand"
0	es.es		signals look like.	
	92) 6 7	7	Shorthand available	e for:
3			RO	
	ne, ex. j		RRR	
8	Mi 10			
-)6 -6 cB	73	
0	• • • WSJT 10.0 r4087			
2 * 1 8		Az: 134.43 E1: 60.83 Dop: 304	(Everyone drifts do	wn.)
ĉ		Dgrd: -0.6	SSB and CW.	
	51.5 1.0000 Time (s) WA3RGQ_17010 FileID Sync dB DT DF W	38_022500.WA	Now try echoes on .080 just to look for water in coaxes.	
	021500 0 -33 2.7 452 10 021600 0 -22 5.4 223 7 021700 0 -24 0.6 218 4		These echoes are audible!!	
2	021900 0 -32 2.2 439 28 022100 5 -19 1.7 -223 11 ★ N5BF WA3RGO ELS	8 1 0	Incomplete QSO. 0206 changed to 1700 Rx offset.	
ŵ	022300 7 -27 -244 4 RO ? 022500 4 -20 1.4 -264 11 * 73 R-17	1 0	The low guy was too low, can't decode the high guy.	
	022500 1 0/3 022500 2 5/21		Now the low loud guy has moved up. And I'm on bigger BW.	
6	022300 2 3/21		That's a complete.	
9	Log QSO Stop TMonitor* Decode Erase	Clear Avg Include Exclude Tx Stop	Now RGQ is working right.	
2	To radio: WA3RGQ Lookup Sync 1 Zap	WA3RGQ N5BF DM04		
3 1 1	Grid: FM19mm Add Freeze	WA3RGQ N5BF DM04 000 Tx2		
ě	Az: 69 3691 km	RO Tx3 73 RRR Tx4 56		
	2017 Jan 08 02:27:06 Dsec 0.0 Gen Msgs	73 1296 EME. N5BF 2017 SBMS	/MUD	45
The second	Auto is ON	CQ N5BF DM04		

Fre						Spec	cJT by	K1JT						
	q: 1566 D	F: 296 ((Hz)	BW		<		>	Speed	: (1 2 (• 3 () 4 ()	5 🔘 I	H1 🔘
200-100	0-800 -6	00 -40	0 -200	° 2	00 40	0 60	800	1000 1	200 1	40	0 1600 18	00 2000 220	02400	26002
				1										
10:46				<u>.</u>										
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			- 12- - 12-										
18:44			Sec. 1	A	200									
1		1.	4	8										
10:42				02										
				1.5								1983 R. 194	1	
10.40														
10:39	8-51-50 157/3-15								2				<u></u>	and the second sec
			J		ſ		18:46:5	0]			-2 6	3
					WSJT	10.0	r4087	by K	1JT					
											N	loon		
			Λ								Az: 89	.34		
$\sim \sim$	$\sim \sim$		\sim	\sim	\sim	~	\sim	\sim	\sim	-	El: 26	.17		
				ML							Dop:	111		
		al al an					when here		-		Dgrd: -	0.6		
				F (Hz)		IK3CO	J_170331	104400	14/4	_				
508			_					109900						
			DF W		NSBE	1.71	_			0	10			
83600	2 -20	2.0 -	_	RO	N5BF ?	LZ1D	DX KN22		000	0	10	_		
83600 83800 1 84000 1	2 -20 0 -24 0 -21	2.0	OFW -6754 -792 -964	RO 73	?		DX KN22	c						
83600 83800 1 84000 1 84000	2 -20 0 -24	2.0 -	0FW -6754 -792	RO 73	? ? N5BF	IK30	_	- 0		0	10 10 10			
83600 83800 1 84000 1 84000 84000 84000 84200	2 -20 .0 -24 .0 -21 2 -21 2 -21 1 -21	2.0 2.7 2.7 2.6	-67 5 4 -79 2 -96 4 -16 7 4 -16 7 4 -16 6	R0 73	? N5BF N5BF	IK30	00 JN6	C		0	10 10			
83600 83800 1 84000 1 84000 84000 84200	2 -20 .0 -24 .0 -21 2 -21 2 -21 1 -21	2.0 2.7 2.7 2.6	OF W -67 5 4 -79 2 -96 4 -16 7 4 -16 7 4	R0 73	? N5BF N5BF	IK30	X KN22	C		0	10			
83600 83800 1 84000 1 84000 84000 84200 84200 84400	2 -20 .0 -24 .0 -21 2 -21 2 -21 1 -21	2.0 - 	-67 5 4 -79 2 -96 4 -16 7 4 -16 7 4 -16 6	R0 73	? N5BF N5BF N5BF	IK30 IK30 IK30	00 JN6	C		0	10 10			
83600 83800 1 84000 1 84000 84000 84200 84400 84400	2 -20 .0 -24 .0 -21 2 -21 2 -21 1 -21 1 -23	2.0 - 2.7 - 2.7 - 2.6 - 2.6	-67 5 4 -79 2 -96 4 -16 7 4 -16 7 4 -16 6	R0 73	? N5BF N5BF N5BF	IK30 IK30 IK30	20J JN65 20J JN65 20J R-08	C		0 0 0	10 10 6			
83600 83800 1 84000 1 84000 84000 84200 84400 84400	2 -20 .0 -24 .0 -21 2 -21 2 -21 1 -21 1 -23 1 19/31	2.0 - 2.7 - 2.7 - 2.6 - 2.6	-67 5 4 -79 2 -96 4 -16 7 4 -16 7 4 -16 6	R0 73	? N5BF N5BF N5BF	IK30 IK30 IK30	20J JN65 20J JN65 20J R-08	C		0 0 0	10 10 6			
83600 83800 1 84000 1 84000 84000 84200 84400 84400	2 -20 .0 -24 .0 -21 2 -21 2 -21 1 -21 1 -23 1 19/31 2 0/16	2.0 - - 2.7 - 2.6 - 2.6	-67 5 4 -79 2 -96 4 -16 7 4 -16 7 4 -16 6	R0 73	? N5BF N5BF N5BF	IK30 IK30 IK30 LZ10	20J JN65 20J JN65 20J R-08	- 5 3		0 0 0	10 10 6	Exclude)Tx	Stop
83600 1 83800 1 84000 1 84000 84000 84200 84400 84400 84400 84400	2 -20 .0 -24 .0 -21 2 -21 2 -21 1 -21 1 -23 1 19/31 2 0/16	2.0 - - 2.7 - 2.6 - 2.6	-67 5 4 -79 2 -96 4 -16 7 4 -16 7 4 -16 6 4 13 9 4	R0 73	? N5BF N5BF N5BF	IK30 IK30 IK30	X KN22 20J JN6 20J R-00 X KN22	Clea	ar Avg	000000000000000000000000000000000000000	10 10 6 10	Exclude		Stop
83600 83800 1 84000 2 84000 84200 84200 84400 84400 84400 84400 84400 84400 70 radio:	2 -20 0 -24 0 -21 2 -21 2 -21 1 -21 1 -23 1 19/31 2 0/16 O Sto	2.0 - - 2.7 - 2.7 - 2.6 - 2.6 - 2.6	•Monitor*	R0 73	? N5BF N5BF N5BF N5BF	IK30 IK30 LZ1D	X KN22 XOJ JN63 XOJ JN63 XOJ R-08 X KN22 Erase Zap AFC	Clea	ar Avg DJ N5	0 0 0	10 10 6 10 Include			
83600 83800 1 84000 2 84000 84000 84200 84400 84400 84400 Log QS	2 -20 0 -24 0 -21 2 -21 2 -21 1 -21 1 -23 1 19/31 2 0/16 O Sto IK3COJ JN65mm	2.0 - - 2.7 - 2.6 - 2.6 - 2.6 - 2.6 - 1 6	•Monitor •Add	R0 73	? N5BF N5BF N5BF N5BF Decode Sync 1	IK30 IK30 LZ1D	X KN22 XOJ JN63 XOJ R-00 X KN22 Erase Zap	Clea	ar Avg DJ N5	0 0 0	10 10 6 10 Include DM04			Tx1
83600 83800 1 84000 2 84000 84200 84200 84400 84400 84400 84400 ELog QS To radio: Grid:	2 -20 0 -24 0 -21 2 -21 1 -21 1 -23 1 19/31 2 0/16 O Sto IK3COJ JN65mm Az: 3	2.0 - - 2.7 - 2.6 - 2.6 - 2.6 - 1 6 -	•Monitor*	R0 73	? N5BF N5BF N5BF N5BF Decode Sync 1	IK30 IK30 LZ10	X KN22 XOJ JN63 XOJ JN63 XOJ R-08 X KN22 Erase Zap AFC	Clea IK3CC RO	ar Avg DJ N5	0 0 0	10 10 6 10 Include DM04			Tx1 Tx2 Tx3
84000 84200 84400 84400 84400 Log QS To radio: Grid:	2 -20 0 -24 0 -21 2 -21 2 -21 1 -21 1 -23 1 19/31 2 0/16 O Sto IK3COJ JN65mm	2.0 - - 2.7 - 2.6 - 2.6 - 2.6 - 1 6 -	•Monitor •Add	RO 73	? N5BF N5BF N5BF Decode Sync 1 Tol 50	IK30 IK30 IZ1D	X KN22 XOJ JN63 XOJ JN63 XOJ R-08 XX KN22 Erase Zap AFC Freeze	Clea IK3CC RO RRR	ar Avg DJ N5	0 0 0 BF BF	10 10 6 10 Include DM04 DM04 OO			Tx1 Tx2 Tx3 Tx4

An example of JT picking out one signal in the presence of overlapping QRM

EW1AA

EW1AA's new 1.2 m dish with 1296 septum feed

This is the smallest station I've worked on JT65C. 100 W.

The 23 cm Problems

- Doppler
- Trees
 - Absorb TX, 4-5 dB typical based on reception reports
 - With other variables so this is not well determined
 - Noise and Absorb RX, 8 dB measured on K2UYH CW CQ, DUBUS
 - Worked in the clear at 0205, 251/051, -12
 - Struggled to pick out CQ in the trees later at 0400, 265/040, -20
 - Suspect 4-5 dB absorption and the rest increased noise floor
 - Thin pines
 - Oaks are seen to be infinite absorbers
- Libration can be > 30 Hz
 - Eats up elements and characters at 20 WPM
 - Causes missed, mangled, or misread tones on JT
- Doppler echoes can fall outside of SSB passband

Looking East Calls 2nd Period

- I didn't know this until after I'd written and turned in this paper!
 - 1st period even minutes
 - 2nd period odd minutes
 - CW conventions are different: 2 minute, 2.5 minute, and are not much employed today
- How do you know your frequency if you don't have reference?
 - (See Millar's Rule" just get on the air then work on stuff like this)
 - Meanwhile, use beacons

ONOEME

Autonomous CW transmitter on 1.296000000 GHz Whenever moon is > 10° in JO21jg (Belgium) 3.7 m. 400 W.

Freq: 2912 DF: 1641 (Hz)	SpecJT	by K1JT	1 0 2 • 3 0 4	4 () 5 () H
00-1000-800 -600 -400 -200 0	200 400 600	800 1000 1200 1400	1600 1800 2000	2200 2400
	mhinhi	duuliuluul	uliuliuli	ntinti
88		terre dan dan sel		
••				
58				
			Chen Brangetona ka inan	
	01	02:59		
		02.39		10.00
0	WSJT 10.0 r4087	7 by K1JT		
			Moon	
			Az: 112.15	
			El: 53.12	
and the second	Menunun		Dop: 1618	
		************	Dgrd: -0.6	
	(Hz)			
Level Sig DF Width	Az El Q			
Level Sig DF Width . 33 -5.4 -15.9 -3.4 0.	Az El Q 7 112.0 53.0 10			
N Level Sig DF Width . 33 -5.4 -15.9 -3.4 0. 34 -5.4 -15.5 -3.0 0.	Az El Q 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10)		
Level Sig DF Width 33 -5.4 -15.9 -3.4 0. 34 -5.4 -15.5 -3.0 0. 35 -5.4 -17.1 -4.4 0. 36 -5.4 -16.4 -2.7 0.	Az El Q 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10			
Level Sig DF Width 33 -5.4 -15.9 -3.4 0. 34 -5.4 -15.5 -3.0 0. 35 -5.4 -17.1 -4.4 0. 36 -5.4 -16.4 -2.7 0. 37 -5.5 -19.1 -4.7 1.	Az El Q 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10			Τ
N Level Sig DF Width 33 -5.4 -15.9 -3.4 0. 34 -5.4 -15.5 -3.0 0. 35 -5.4 -17.1 -4.4 0. 36 -5.4 -16.4 -2.7 0. 37 -5.5 -19.1 -4.7 1. 38 -5.4 -15.4 -3.0 0. 39 -5.4 -19.7 -2.7 1.	Az EI Q 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 0 112.1 53.0 10 7 112.1 53.1 10 3 112.1 53.1 8)) 7)		
N Level Sig DF Width 33 -5.4 -15.9 -3.4 0. 34 -5.4 -15.5 -3.0 0. 35 -5.4 -17.1 -4.4 0. 36 -5.4 -16.4 -2.7 0. 37 -5.5 -19.1 -4.7 1. 38 -5.4 -15.4 -3.0 0. 39 -5.4 -19.7 -2.7 1.	Az EI Q 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 0 112.1 53.0 7 7 112.1 53.1 10)) 7)		
N Level Sig DF Width 33 -5.4 -15.9 -3.4 0. 34 -5.4 -15.5 -3.0 0. 35 -5.4 -17.1 -4.4 0. 36 -5.4 -16.4 -2.7 0. 37 -5.5 -19.1 -4.7 1. 38 -5.4 -15.4 -3.0 0. 39 -5.4 -15.4 -3.0 0. 39 -5.4 -15.6 -3.4 0.	Az EI Q 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 0 112.1 53.0 10 7 112.1 53.1 10 3 112.1 53.1 10			Turbha
N Level Sig DF Width 33 -5.4 -15.9 -3.4 0. 34 -5.4 -15.5 -3.0 0. 35 -5.4 -17.1 -4.4 0. 36 -5.4 -16.4 -2.7 0. 37 -5.5 -19.1 -4.7 1. 38 -5.4 -15.4 -3.0 0. 39 -5.4 -15.4 -3.4 0. 39 -5.4 -15.6 -3.4 0.	Az EI Q 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 0 112.1 53.1 10 3 112.1 53.1 10 *Decode* Erase		ude Exclude	Tx Stop
N Level Sig DF Width 33 -5.4 -15.9 -3.4 0. 34 -5.4 -15.5 -3.0 0. 35 -5.4 -17.1 -4.4 0. 36 -5.4 -16.4 -2.7 0. 37 -5.5 -19.1 -4.7 1. 38 -5.4 -15.4 -3.0 0. 39 -5.4 -15.4 -3.0 0. 39 -5.4 -15.6 -3.4 0.	Az EI Q 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 0 112.1 53.0 10 7 112.1 53.1 10 3 112.1 53.1 10		ude) Exclude	Tx Stop • Tx1
N Level Sig DF Width 33 -5.4 -15.9 -3.4 0. 34 -5.4 -15.5 -3.0 0. 35 -5.4 -17.1 -4.4 0. 36 -5.4 -16.4 -2.7 0. 37 -5.5 -19.1 -4.7 1. 38 -5.4 -15.4 -3.0 0. 39 -5.4 -19.7 -2.7 1. 10 -5.4 -15.6 -3.4 0. 9g QSO Stop *Monitor* . pig QSO Stop *Monitor* .	Az EI Q 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 0 112.1 53.0 10 3 112.1 53.1 10 3 112.1 53.1 10 *Decode* Erase ✓ Tx First		ude Exclude	
N Level Sig DF Width 33 -5.4 -15.9 -3.4 0. 34 -5.4 -15.5 -3.0 0. 35 -5.4 -17.1 -4.4 0. 36 -5.4 -16.4 -2.7 0. 37 -5.5 -19.1 -4.7 1. 38 -5.4 -15.4 -3.0 0. 39 -5.4 -15.4 -3.0 0. 39 -5.4 -15.4 -3.0 0. 99 -5.4 -15.6 -3.4 0. og QSO Stop *Monitor*	Az EI Q 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 0 112.1 53.1 10 3 112.1 53.1 10 *Decode* Erase ✓ Tx First Gen Msgs		ude Exclude	Tx1 Tx2
N Level Sig DF Width 33 -5.4 -15.9 -3.4 0. 34 -5.4 -15.5 -3.0 0. 35 -5.4 -17.1 -4.4 0. 36 -5.4 -16.4 -2.7 0. 37 -5.5 -19.1 -4.7 1. 38 -5.4 -15.4 -3.0 0. 39 -5.4 -19.7 -2.7 1. 10 -5.4 -15.6 -3.4 0. 9g QSO Stop *Monitor* . pig QSO Stop *Monitor* .	Az EI Q 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 0 112.1 53.0 10 3 112.1 53.1 10 3 112.1 53.1 10 *Decode* Erase ✓ Tx First		ude Exclude	Tx1 Tx2 Tx3
Level Sig DF Width 33 -5.4 -15.9 -3.4 0. 34 -5.4 -15.5 -3.0 0. 35 -5.4 -17.1 -4.4 0. 36 -5.4 -16.4 -2.7 0. 37 -5.5 -19.1 -4.7 1. 38 -5.4 -15.4 -3.0 0. 39 -5.4 -15.4 -3.0 0. 39 -5.4 -15.4 -3.0 0. 99 -5.4 -19.7 -2.7 1. 10 -5.4 -15.6 -3.4 0. 99 QSO Stop *Monitor*	Az EI Q 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 0 112.1 53.1 10 3 112.1 53.1 10 *Decode* Erase ✓ Tx First Gen Msgs		ude Exclude	Tx1 Tx2
Level Sig DF Width 33 -5.4 -15.9 -3.4 0. 34 -5.4 -15.5 -3.0 0. 35 -5.4 -17.1 -4.4 0. 36 -5.4 -16.4 -2.7 0. 37 -5.5 -19.1 -4.7 1. 38 -5.4 -15.4 -3.0 0. 39 -5.4 -15.4 -3.0 0. 99 -5.4 -15.6 -3.4 0. 99 -5.4 -15.6 -3.4 0. 99 QSO Stop *Monitor* (Dockup) 90 QSO Stop *Monitor* (Dockup) 6rid: JN48mm Add Add	Az EI Q 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 0 112.1 53.1 10 3 112.1 53.1 10 *Decode* Erase ✓ Tx First Gen Msgs		ude Exclude	Tx1 Tx2 Tx3
Level Sig DF Width 33 -5.4 -15.9 -3.4 0. 34 -5.4 -15.5 -3.0 0. 35 -5.4 -17.1 -4.4 0. 36 -5.4 -16.4 -2.7 0. 37 -5.5 -19.1 -4.7 1. 38 -5.4 -15.4 -3.0 0. 39 -5.4 -19.7 -2.7 1. 10 -5.4 -15.6 -3.4 0. 99 QSO Stop *Monitor* . vg QSO Stop *Monitor* . radio: DL6SH Lookup . Grid: JN48mm Add . KA: 40 Az: 32 E: 0 9456 km	Az EI Q 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 7 112.0 53.0 10 0 112.1 53.1 10 3 112.1 53.1 10 *Decode* Erase ✓ Tx First Gen Msgs			 Tx1 Tx2 Tx3 Tx4 Tx5

Echoes

(digital, but CW looks about the same if you have a steady fist)

CW QSOs (and SSB)

SNR _{2500 Hz}	RST	Remark
-20	-	Typically not workable
-18	539	Half hour of repeating everything
-16	559	Nominal with similar station
-14	569	Easy QSO
-12	579	First try, even in trees (SM4IVE: 10 m. 100 W.)
-04	53	SSB (PI9CAM 25 m. 150 W.)

Libration:

Eats up elements and characters at 20 WPM

Mitigation is lots and lots of QSM

You hear pieces, write them down, piece them together

Coordination Warning:

Easy JT stations may be below the CW threshold (~10 dB difference)

JT works down to -28 or even -30 with Deep Search and/or averaging enabled

SSB QSOs

- Same as CW
- A "small" station like mine does not resolve the moon so it gets all the libration from all of the moon
- Female voice helps (like everywhere)
 - PI9CAM operator was Joanna DJ5YL

A QSO Is

- From long long tradition
 - Both callsigns heard on both sides
 - Something else heard on each side
 - Rogers heard by both sides
 - 73 optional

Assistance / Coordination

- CALL3.TXT tells algorithm what to try first
 - It's like knowing the answer, which we often do
 - But not always...
- The HB9Q logger <u>http://www.hb9q.ch/hb9q/</u>
- The reflector
 - <u>http://www.nlsa.com/nets/moon-net-help.html</u>
- The "432 and Above EME Newsletter" K2UYH
- E-mail schedule, info from https://qrz.com/
 - But what works better is just to find people when they are actually on the air
- 14.345 Sunday 1500Z seems to be QRT
- Assistance and coordination is controversial and ubiquitous
 - For GOTA, use all the assistance you need
 - For contest or award credit, check the rules
 - ARRL allows and encourages coordination now DUBUS prohibits (even precoordinated contacts are penalized)

Assistance / Coordination

- The very first amateur radio EME QSO:
 - W1BU W6HB
 - Three hours in the middle of the night 7/17/60
 - Telephone (long distance) the whole time
 - T/R involved "box wrenches" and landline coordination
 - Other mitigations
 - Yelling at people to
 - Stop stomping around and upsetting the LO
 - Stop making noise so he could hear in headphones
 - Etc.
- For GOTA, use all the assistance you need
- The "Credit QSO" was 7/21/60 @ 0600 PDT (presumably unassisted)
 - Report was 8 dB in 100 Hz, pointing in fog (would be -6 in JT today)
 - 2 dB system temperature, 170K
- "Project Moon Bounce As Seen from Rhododendron Swamp" by F. S. Harris, W1FZJ at <u>http://www.ok2kkw.com/eme1960/eme1960eng.htm</u>

Interesting "Excuses"

- Receive Only
- No Elevation
- Pointing in your direction not calibrated well enough
- Can't see as far west as DM due to building to the west (EU)
- Rare DX vacationing at Disneyland this month
- I'm at the "Weinheim Convention" this weekend
- Don't have (whatever) set up yet (digital, CW, etc.)
- I'm on 6 cm this weekend
- Elevation rotator just blew a fuse
 - Did work some months later
- Whenever I turn my 23 cm dish controller all the lights flash
- My dish is on the west side of the tower (Australia), I can only work Europe
- Work (!)

But...

- Ops like PA3DZL will accommodate
 - Had agreed to schedule via e-mail
 - Was at a restaurant with family
 - Was in touch by e-mail and logger
 - Let me know he was on the way
 - Arrived home with 3 degrees of moon left
 - Made the QSO!
- There are many stories like this

N5BF 23 cm EME QSO attempts, completes, initials, etc.

N5BF 23 cm EME Statistics August 16, 2016 - August 16,2017

QSOs Attempted	237	
QSOs Completed	184	78% completions
Unique Initial Callsigns	88	(some callsigns on both JT65C and CW)
JT65C Initials	73	83% (KNOWS completed in JT65C2)
CW Initials	29	33%
SSB Initials	1	PI9CAM / DJ5YL op.: 25 m. 100 W.
DXCC Entities	29	14 confirmed
U.S. States	11	4 confirmed
Canadian Provinces	3	2 confirmed
Most Completions	12	VA6EME DO44, Randy (nice auto-Doppler)
Calls to east, Eu, Asia, Afr	58	65%
Calls in Americas	25	28% includes VE4MA in both MB and AZ
Calls to the west, Au, Ja, As	6	7% includes UA9YLU MO92

Three Contests

2016 ARRL, Oct/Nov

2017 DUBUS, Apr

2017 ARI Spring, May

Operating Time	44:50	Two weekends, October and	Operating Time	11:01	48 hour weekend	Operating Time	3:30	48 hour weekend
Attempts	52	November '16 Online coordination	Attempts	19	Not counting "didn't get	Attempts	6	
Attempts	52	is encouraged			enough to call"	QSOs	5	3 JT65C (3), 1 CW
QSOs	36	12 CW, 24 JT65C.	QSOs	18	CW only, no)	(20), 1 SSB! (20)
		Dups logged, not counted			coordination during event	Multipliers	4	2x Italian Stations Worked
Multipliers	26	States, provinces, other DXCC countries	Multipliers	15	Unique prefixes, e.g. G3, G4, K5, W5	Score	196	Category A, 3 m. parabola, x1
Score	93,600		Score	27,000				mult. @ 1296
						Rate	1.4	
Rate	0.80	Yes, 1.25 hr. / QSO	Rate	1.6	37 minutes /			
					QSO	New Initials	4	Worked PI9CAM
New Initials Overall	29		New Initials Overall	3		Overall		on CW and SSB!

Embarrassing goofs:

RA3AUB – Doppler wrong sign for west

K4EME – Didn't know how to accommodate Simplex

23 cm EME Log Spreadsheet (during DUBUS)

		AD /	-		710			-	-			Evnt	_		AP		-	-	AT	AU	AV	AW	AX	-			BA	BB	BC	BD		BF	BG		I BJ	BK
4	A# (Q# II	J# I	J#	IC#	IS#	DXCO	Stat	te F	Prov	Evnt			QR	Entity					Date Z	Time 2	Call	Mode	т	x P	Rx	Grid Tx	Grid Rx	Name	Az	El	Freq	QSL	W D		Coord.
	239	78% 4	8% 1	83%	33%	1%	30)	11	3		80	% 16	% 13%	5	12	14		4 🚺	2														7 1	1 45	QSLs pending
	239	186	89	74	29	1	30)	11	3	5		4 3	0 24	1																					
-					_															4/3/17	0:0	0						27000	final score							End DUBUS EME
																	•			4/2/17																
	165	129									18	1	.5		OE5	2	•					9 OE5JFI	cw		569	559			Hannes		95 41	1296.01700	pend			no
	164				25						17		4		UA3	2						3 UA3PT			569	559			Dmitry			1296.01700				no
		127	61		24						16					1						3 OK1CS			549	559			Emil			1296.01500			່ 1	no
	162			_	23			-	_		15		3		NC1	6				4/2/17			CW		549	539			Frank			1296.01500				no
	161								-		14		-			3						5 OK1DF	c cw		549	559			Zdenek			1296.01200				no
								-																									QRZ says			
	160	124	60		22		2	2			13	1	.2		Sweden, SM4	1				4/2/17	19:5	3 SM4IV	E CW		579	549			Lars		80 18	1296.02059				no
																				4/2/17	19:4		1E		-15						79 16					
								-					-																							
																				4/2/17	5:4	5 CQ				-19					279 20	1296.03220				
																	ľ	ľ		4/2/17	0:2		ECHO			-16						1296.03060				
	159	123							-		12	1	1		KL6	2						4 KL6M	CW		559	559			Mike		121 62	1296.02490				no
	158							-			11		-		NEO .	2						5 VE6BG			559	559			Skip			1296.02490		-		no
	157										10		.0		G4	7						5 G4CCH			579	559			Howard			1296.02650	TX 06/07/17 in same envelope with 8/29/16	5		no
	156							-	-		9		9	-	G3	2						B G3LTF	CW		559	569			Peter			1296.02460		-	-	no
	155		-					-	-		8		8	-	ESS	3						B ESSPC	CW		559	559			Viljo			1296.02725			-	no
	154		-					-	-		7		7	-	OK1	4						5 OK1KI			579	559			Tonda			1296.03865			-	no
	153				21			-	-		6		6		HB9	4						4 HB9Q	CW		589	559			Dan			1296.04240				no
	152				20			-	-		5		5		DL6	2						B DL6SH	CW		559	559			Slawek			1296.04000				no
	151				20						4		4		OK2	3						OK2DL	CW		569	559			Marek			1296.02775				no
		114	59		19						3		3		SP6	1		-				B SP6JLV			569	559			Andy			1296.02610			-' 1	no
	150	114	35		15				-		3		5		3F0	-		•		4/1/1/	19.1	STUL			505	555			Andy		04 22	1250.02010	penu	• •	7	
																						ONOEN			-14							1296.00090				
																	(<u> </u>		4/1/17		5 CQ	CW									1296.03120			- E	
	149																			4/1/17		2 unk.	CW									1296.31200				
	148										2		2		K2	4				4/1/17		5 K2UYH			569	559			Al			1296.03120				no
	147	112									1		1		VE6	3				4/1/17	1:5	7 VE6TA	CW		559	559			Grant	1	250 52	1296.03120	pend			no
											0		0							4/1/17	0:0	0														DUBUS EME 1.2 V

23 cm EME "Looking For" Spreadsheet

	A	8	C	D	E	F	G	Н	I	J	K	Lan	M	N	0	Р	Q
	Date	Source	Call	can work?	Grid	Name	138		10	sked prec.	sked notes	station	89		39%		
2							unworked		attempted	0. Made			inits wkd.	hoped workab	le		
3	9/3/17	1:08	last check							1. Proposed							
4			T							2. Make							
5										3. Want							
6										4. Watch							
7										5. Blocked		Blocked means "no", "unknown", or	r somehow co	nfigured where	it is impossibl	le, like "no e	levation"
12									1	1	1						
13							0	-									
14							0	-									
15	9/2/17		VE3NXK	yes	FN05gr	Bill	2	-	-	-		3 m. 100 W., first seen 12/7/16 in lo	og, attempted	10/27/16			
16	8/27/17		DL1SUZ	yes	JO53un	Uwe	2	-		2		2 m. 100 W					
17	8/27/17		DG0FE	yes	JO62UN	Lothar	2	-		2		4.50 m. 100 W.					
18	8/27/17		ON5GS	yes	JO21sc	Dirk	2	-		2		6 m. 230 W.					
19	8/25/17	HB9Q	OH2DG	yes	KP30ck	Eino	2	1		2		8 m.					
20	8/24/17	HB9Q	II0IAAR/5	yes	JN53eu	Fil	2	1	1	. 2	1	3 m. 150 W, attempt 3/12/17 but u	nclear what w	as up, callsign, p	pointing, frequ	uency	
21	8/15/17	HB9Q	F1RJ	yes	JN18at	Jean	2	1		2	1	3 m. 200 W.					
22	8/13/17	HB9Q	WA3LBI	yes	FN20ji	Jim	2	1		2		2.4 m. 250 W.					
23	8/13/17	HB9Q	G4RGK	yes	1091on	Dave	2	1		2	1	4.6 m. 200 W. In PA3DZL 2017 DUB	US report, rep	orted me as "h	eard" in DUBL	JS 2017 in K	2UY new
24	2/13/17	DK3WG	RWOLDF	yes	PN74	Serge	2	1	1	2		attempt on 11/20/16 failed due to r	my cockpit err	or (+/- Doppler)	, decoded -27	, 2.1 m. 200	W.
25	8/26/17	HB9Q	VE4MO	edge	EN19kt	Kirk	1	1		2	1	4x45 100 W26 to NC1I. Looked ar	nd didn't find 8	8/26/17 but did	n't look long b	because wor	rked ZS6J
26	8/22/17	HB9Q	UA9FA	edge	LO87dx	Vlad	1	1		2		1.8 m. 100 W. 6/23/17 14:49:43 U/	A9FA 144000 :	1-27 2.2 404 5	CQ N5BF DN	/04 0 6 whil	e looking
27	7/3/17	HB9Q	ZL3RC	edge	RE66fl	Roger Corbett	1	1		2		4x60 350 W. Long attempt at his m					
28	8/27/17		G4DML	ves	JO02oj	Graham	2	1		3		2.3 m., 500 W. He was in the trees					
29	8/27/17		OH3LWP	ves	KP21am	Arl	2	-		3		1.8 m. 350 W. at feed, worked VA6E					
30	8/20/17		OZ1LPR	ves	JO44uw	Peter	2	-		3		2.4 m. offset 350 W. but doesn't say				., ,	,,
31	8/20/17		W7MEM	ves	DN17nt	Mark	2	-		3		16' dish, > 50 W.					
32	8/20/17		GM4PMK	ves	IO66xj	Roger	2	-		3	·	3.2 m. 100W.					
33		log/contest		yes	FM08	Cowles	2	-		-		looking for KN0WS, Nebraska 8/20/	17 was menti	oned but not o	logger		
34	8/20/17		IK1FJI	ves	JN44II	Valter	2	-	-	3	·	build 3.2 m. KW	17, was mena		in logger		
35	8/19/17		ON7FLY	yes	JO10lt	Ronald	2	-		3		3 m. 125 W.					
36	8/17/17		CT7AFN	ves	IM59pk	Carlos	2	-		3	·	2.7 m. 200 W., first seen 12/13/16					
37	8/16/17		IONAA	yes	JN63gc	Mario	2	-		3		5 m. 150 W.					
38	8/16/17		W3HMS		FN10mf	John	2	-		3	·	3 m. 500W.					
39	7/27/17		DK5AI	yes		Wolf	2			3		1.75m. 250 W.					
_				yes	JO51go		_	-		3			7/16/17				
40	7/27/17		PAOPLY	yes	JO22ih	Jan	2	-		-		3 m. 200 W. Back after seven years		147		and has di	
41	7/25/17		WA2FGK	yes	FN21de	Herb	2	-		3		3.65 m., 400 W., copied Herb working	ng others 6/28	s/17, moved off	to get FSEJZ a	and ne disap	peared fi
42	7/25/17		UN6PD	yes	MN69jm	Nikolai	2			3		3 m. 300W. QSL RW6HS					
43	7/24/17	HB9Q	OK8WW	yes	JN79dv	Richard	2	1		3		3.5 m. 500 W. First day on EME was	s 7/22/17, woi	rked 6 on CW.	couldn't copy	/ him well er	nough. M

"Looking For" doesn't work for everyone – e.g. SM4IVE in DUBUS or IK2MMB in the ARI – SS trick

Levels of Amateur Obsession

- 10. Quit job, family, etc., sit on the air and internet 24/7 (12/7 for EME) in order to jump immediately on all opportunities. Spend off time (the other 12/7) and resources to the limits to improve capabilities.
- 9. Sit on the internet 24/7, leave whatever (job, family, etc.) to rush to the station and respond to any opportunities seen there immediately. Work deals for capability improvement.
- 8. Stay online and on air at all times something else (job, family, etc.) doesn't interfere. Push special events as equal priority to job, family, etc.
- 7. Stay online and on the air when at home (or at the station) and without the priority pushing (i.e., lower priority than job, family, etc.)
- 6. Check opportunities daily and work to coordinate with the rest of life.
- 5. Plan for maximized effect in limited, allocated time and resources at appropriate priority.
- 4. Has a station that he/she once set up in a season of obsession and turns it on once in a while when somebody makes a request.
- 3. Be a reasonable person and see what you can do in your "spare time."
- 2. Talk to somebody about it once in a while.
- 1. Daydream about it once in a while.
- 0. Not interested.
- 4/3/17

Seat of the Pants Link Budget

Value		dB	units	
My EIRP	352 KW	+85.5	dBm	
Fraction of Sky Occupied by Moon	5.1 ppm	-52.9	dB	
My power on moon disk	1.8 W	+32.6	dBm	← Who knew?
Percentage reflected (from various research)	7%	-11.5	dB	
Isotropic sphere around moon @ earth distance	$2x10^{18} m^2$	-182.7	dB (m ²)	
Area of 3 meter dish	7.1 m ²	+8.5	dB (m ²)	
Power Intercepted (neglect efficiency and losses)		-153.1	dBm	
Dish efficiency of 70% applied twice		-3.0	dB	
Boltzmann's Constant in 2500 Hz @ 110 Kelvin		-144.2	dBm	
Expected echo SNR		-11.9	dB	
VK3UM echo predict		-12.4	dB	
Observed echo (best ever)		-9.9	dB	
Observed echo (typical perigee)		-17.3	dB	
Close enough for "seat of the pants"				70

Workability Heuristic

$d^2_{dx} * p_{dx}$	mode	Heuristic QSO
>300	JT65C	EW1AA
>5000	CW	SM7FWZ
>50,000	SSB	PI9CAM

N5BF is 2700 on this metric, self spot is typically -16 to -20

ONOEME is 5500 on this metric, typically -14

G4FUF is 2x49 yagis * 400 W. Approx. 1 m. dish equivalent (so, "400") Linear polarization, another 3 dB down

All attempts to date with 4x yagis have failed ... much less 8x yagis

Conclusion

- Everyone on 23 cm EME is a celebrity
 - Everyone wants to work everyone else
- Humanity is what it is and timekeeping is what it is because of the moon
 - EME is a great way to get back in touch
 - (Humanity may *exist* because of the moon)
 - (but that's another talk)

Working the Spring 2017 ARI

See you on the Moon!

Moonset out the window from the shack

Young moon after 8/21/17 eclipse

Backup

Further Reading

- Master's Thesis 2015
 - Magnus Lindgren SM6XMA
 - "A 1296 MHz Earth-Moon-Earth Communications System Theory and Practice"
 - Department of Earth and Space Sciences
 - Chalmers University of Technology
 - Gothenburg, Sweden
 - <u>http://publications.lib.chalmers.se/records/fulltext/</u> 217884/217884.pdf
- Excellent and thorough discussion of the concepts, practicalities, and history of EME including in depth look at the theory behind link analysis and noise, construction projects, and basically getting it going

QSLs

- Treasurewood Productions
- TreasurewoodArts@gmail.com
- Katherine L. D. Wallin KG6HUI

The Barely Works Technology Four

- 1. 23 cm EME
- 2. 6 m meteor scatter
- 3. 3 cm contesting
- 4. Everything else

Todo List 9/1/17

- Integral 100 KHz SDR for improved noise measurements and operational band scanning.
- Shack PC for WJST, VK3UM, DSP-10 and other PC-only software. I have shown that this can be done on an Apple computer, but having to run Parallels (a PC emulator) to run important amateur radio software is always problematic and sometimes impossible.
- Good frequency reference. I have a Packrat GPS Receiver and SG Lab TR1300 V 2.3 (that takes the 10 MHz reference input) sitting here ready to build up. On the long to-do list ... soon as I finish writing this paper.
- Cake Pan choke for existing septum feed. Sitting here ditto ... to-do list. This will be Configuration Four.
- VE4MA feed. Configuration Five. Ditto to-do.
- QRSS CW. It seems to me that operators would be able to read CW right off their waterfall displays for much less signal than could be copied by ear at regular CW speeds. Character elements would go for seconds so that the pattern in the scrolling spectrum would be clear. Transmissions would go for a minute or two, similar to digital modes. Could be automated. I've tried this a few times but think it will take working with a QSO partner over the air, and probably over the telephone, to get it going under 23 cm EME fading conditions. Anyone interested?
- DSP-10 PUA43 contacts. Some on the band have expressed interest. I need the frequency reference working and the DSP-10 hooked back up.
- Other bands? There is no current plan or equipment for other bands, but I did upgrade to the 10 GHz mesh on the RFHamDesign dish, just in case. In the present EME world, however, the possibility of "random" QSOs seems to top out at 23 cm.
- Boost the 23CM2W500 input 30 VDC, possibly gaining 1 dB of output power.
- Try the existing 2 meter and 70 cm tropo station (no elevation) to work the Big Guys on those bands. Just need to hook up a SignLink to that rig and make a schedule. ... to-do.
- Try the 10 GHz portable contest rig (1 m. 8 watt) on the big 3 cm guys. Need to add digital to that rig. ... to-do.
- •
- So, as always, I have an unreasonably long to-do list.

Notable Quote

- 17-10-25 00:47:14 <u>k5dog</u> k5dog
 - Name Steve
 - Equipment 3.6 meter Dish with 150 watts on 23 cm, 450 w on 70 cm
 - Locator EM00wh
- *"23 cm is really the bestest for EME. Plenty of activity, good challenge, and even CW activity."*