BWT Reach Analysis

N5BF/6 2012 October 6

Reach

- EIRP determined by equipment (ant output)
- MDS determined by equipment and noise (seen by ant)
 - MDS can be improved by averaging, 20+ dB
 - Averaging is limited by dynamics
 - Relative motion modeling error
 - Duration
 - Clock(s)
- Noise ultimately limited by sky / environment
- "Reach" = EIRP MDS (dB)
 - Space loss for Zitzelberger path
 - Power subtended plus reflection coefficient plus space loss for radar path

BWT Goals

- Reach Space Radio targets, DIY
- Efforts that improve Reach
 - Algorithmic
 - Hardware
 - Antennas
 - Operations
 - http://cbduncan.duncanheights.com/HamRadio/Dsp10/ Dsp10.html
- (Originally conceived as "Challenge Chart")
 - (Doesn't measure the right thing)
 - (See Implications)

Table not Graph

Case	EIRP	mds 2.3	3		ach 2.3	R 10Ks	R Year		
					0.0)	21.8	39.3	rev averaging improvement
N5BF 2006	49	.9 -1	.66.9		216.8	;	238.6	256.1	3+3=6 dB ground refl. Gain?
N5BF 2009	61	.3 -1	82.9		244.2		266.1	283.5	144 with amp and preamp
N5BF 2011	47	.5 -1	.66.8		214.3	,	236.1	253.5	1296, 8 dB medium gain yagi
N5BF 23 dish	67	.0 -1	.90.0		257.0)	278.8	296.2	
W5UN KW	91	.9 -2	0.00		291.9)	313.7	331.1	
Goldstone Radar	L 129	.2 -2	215.6		344.8	;	366.6	384.1	Mankind's best reach.
Conn	CI								
Case	SL	2			407.3				
Self moon 144	187				187.3				
Self Venus 144	236	.0			236.0				
Self Titan 144	256	.0			256.0)			
Case	subtend	s Refl	SL						251.5-253.5
EME 144	46		11.5	187.3	245.8	}			http://k7xc.tripod.com/id19.html
EME 1296	46		10.0	206.4	263.3				says 6-10 dB libration improvement happer
EVE 144	84		10.0	236.0	330.7				,
EVE 1296	84	.7	4.5	255.1	344.3				(AMSAT Paper)
ISS 144	100	.0	5.0	135.6	240.6 but only have a few minutes				
Meteor 144	221	.6	5.0	137.2	363.8 rock only and only have a few seconds, must depend on a lot of trail				
NEO 144	166	.4	5.0	236.0		km dia.	•		·
Titan 144	118	.7	5.0	256.0	379.7	,			

Conclusions

- Working self across solar system within Reach
 - Confirmed by deep space hearsat types
- Moon, ISS, meteors Reachable
 - As has been known for 60+ years
- Everything else for radar is 80 150 dB down
 - As the solar system radar guys know
 - Goldstone Radar is only ~100 dB better than N5BF
- Hz-level and longer averaging
 - Only helps make station smaller
 - Does not Reach more distant destinations ☺
 - Because they are so very far away

Implications

- Joe Taylor has already made the breakthroughs
 - Still want to replicate for self education
 - Still hope for incremental insight improvement
- Stuff I want to do still enabled by SDRs
 - See 2006 AMSAT paper
 - Still want to be I/Q processing expert
 - Still want to build SW/HW to Reach Specific Goals

Specific Goals

- EME self, EME QSOs in JT and PUA modes
- Meteor 6
- WSPR 40
- Radio Jove, et al
- AO-7 Doppler Tracking and OD
- Software is still next
 - Back to the Arduino
- Az/El still needed on some "farm"
- Watch out for "better" I/Q radios